Godunov-type schemes for hyperbolic systems with parameter dependent source. The case of Euler system with friction
نویسندگان
چکیده
Well balanced or asymptotic preserving schemes are receiving an increasing amount of interest. This paper gives a precise setting for studying both properties in the case of Euler system with friction. We derive a simple solver which, by construction, preserves discrete equilibria and reproduces at the discrete level the same asymptotic behavior as that of the solutions of the continuous system. Numerical illustrations are convincing and show that not all methods share these properties.
منابع مشابه
Investigation of Fluid-structure Interaction by Explicit Central Finite Difference Methods
Fluid-structure interaction (FSI) occurs when the dynamic water hammer forces; cause vibrations in the pipe wall. FSI in pipe systems due to Poisson and junction coupling has been the center of attention in recent years. It causes fluctuations in pressure heads and vibrations in the pipe wall. The governing equations of this phenomenon include a system of first order hyperbolic partial differen...
متن کاملFrom Godunov to a unified hybridized discontinuous Galerkin framework for partial differential equations
By revisiting the basic Godunov approach for linear system of hyperbolic Partial Differential Equations (PDEs) we show that it is hybridizable. As such, it is a natural recipe for us to constructively and systematically establish a unified HDG framework for a large class of PDEs including those of Friedrichs’ type. The unification is fourfold. First, it provides a single constructive procedure ...
متن کاملAsymptotic Preserving Hll Schemes
This work concerns the derivation of HLL schemes to approximate the solutions of systems of conservation laws supplemented by source terms. Such a system contains many models such as the Euler equations with high friction or the M1 model for radiative transfer. The main difficulty arising from these models comes from a particular asymptotic behavior. Indeed, in the limit of some suitable parame...
متن کاملUpwinding of source term at interfaces for Euler equations with high friction
We consider Euler equations with a friction term that describe an isentropic gas flow in a porous domain. More precisely, we consider the transition between low and high friction regions. In the high friction region the system is reduced to a parabolic equation, the porous media equation. In this paper we present a hyperbolic approach based on a finite volume technique to compute numerical solu...
متن کاملUpwinding of the source term at interfaces for Euler equations with high friction
We consider Euler equations with a friction term that describe an isentropic gas flow in a porous domain. More precisely, we consider the transition between low and high friction regions. In the high friction region the system is reduced to a parabolic equation, the porous media equation. In this paper we present a hyperbolic approach based on a finite volume technique to compute numerical solu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009